PROBABILISTIC APPROACH FOR HF-IS HAZARD/RISK MAP

ROGER GHANEM

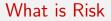
UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES, CA, USA

USC Workshop Hydraulic Fracturing and Induced Seismicity

	hanem

Conclusion

Wikipedia:


A hazard map is a map that highlights areas that are affected or vulnerable to a particular hazard.

Opportunity:

scientific discovery and technological innovation should impact our perception of hazard and risk.

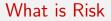
Objective:

hazard maps as live documents that also guide risk-based life cycle management through scientific discovery and data acquisition.

One Useful Definition

Risk is the effect of uncertainty on objectives.

Hazard


How much induced seismicity ?

Exposure

Who and what gets affected ? and what is regulated ?

3

(日) (周) (三) (三)

One Useful Definition

Risk is the effect of uncertainty on objectives.

Hazard

How much induced seismicity ?

Exposure

Who and what gets affected ? and what is regulated ?

∃ → (∃ →

A 🖓 h

What are we Uncertain About ?

Subsurface is not illuminated

Even if it were

we still lack understanding of how instabilities in subsurface nucleate and propagate and fluids are mobilized.

Knowledge reduces uncertainty and increases predictability hazard.

Technology reduces disruption to objectives.

Roger Ghanem

A (10) A (10) A (10)

Knowledge reduces uncertainty and increases predictability of hazard.

- Information: Monitoring.
- **Physics:** Interaction of thermal/mechanical/chemical/biological processes across multiple spatial and temporal scales.

As state of knowledge evolves our assessment of risk changes.

Technology reduces disruption to objectives.

- reduce hazard by
 - understand operational envelope (fracture nucleation, propagation, ...)
 - develop ability to steer system close to operational envelope without crossing it.
- reduce exposure through early warning systems.

Knowledge reduces uncertainty and increases predictability of hazard.

- Information: Monitoring.
- **Physics:** Interaction of thermal/mechanical/chemical/biological processes across multiple spatial and temporal scales.

As state of knowledge evolves our assessment of risk changes.

Technology reduces disruption to objectives.

- reduce hazard by
 - understand operational envelope (fracture nucleation, propagation, ...)
 - develop ability to steer system close to operational envelope without crossing it.
- reduce exposure through early warning systems.

Knowledge reduces uncertainty and increases predictability of hazard.

- Information: Monitoring.
- **Physics:** Interaction of thermal/mechanical/chemical/biological processes across multiple spatial and temporal scales.

As state of knowledge evolves our assessment of risk changes.

Technology reduces disruption to objectives.

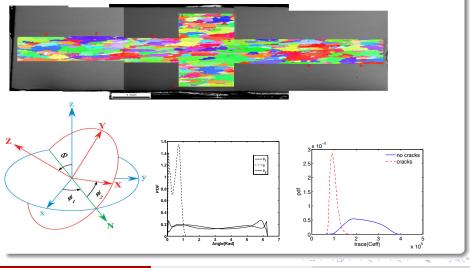
- reduce hazard by
 - understand operational envelope (fracture nucleation, propagation, ...)
 - develop ability to steer system close to operational envelope without crossing it.
- reduce exposure through early warning systems.

What is the Role of Probabilistic Risk Assessment

Package knowledge into actionable information

Transform knowledge into inference on Hazard

Roger Ghanem

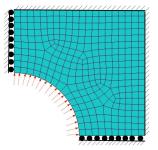

What is the Role of Probabilistic Risk Assessment

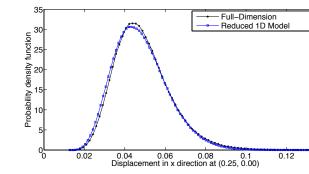
Package knowledge into a useful format

- Physics-based constraints
 - bounds on material property tensors,
 - behavior on multiple scales
- Observation-based constraints
 - Observations on multiple scales
 - Spatial variability
 - Statistics of extremes
 - • •

Package Knowledge

Material on decision-scale characterized from observations at another scale:


Probabilistic HF-IS


What is the Role of Probabilistic Risk Assessment

Transform knowledge into inference

- Propagate many plausible scenarios
- Characterize hazard as statistical object
- Formulate decisions that take advantage of quantified uncertainty in Hazard.

Computational Challenge

USC June 28 2012 11 / 12

э

Comments

- Credible risk assessment should not introduce new assumptions (Gaussian/etc).
- Good risk assessment should mirror advances in science (multiphysics/multiscale/high performance computing).
- Good risk assessment can be used to optimize fracking.
- Worth of information analyses can be carried out as part of a vulnerability analysis to reduce risk as part of a life-cycle management process.