MEQ Data to validate fracture modeling results

Ahmed Ouenes

aouenes@fracgeo.com

The Boom: US is biggest energy producer since 2012!

Estimated Petroleum and Natural Gas Production

Source: Association for the Study of Peak Oil, www.asponews.org

The Boom: America's shale revolution is here to stay!

US Natural Gas and Crude Oil Production, 1949-2040 (est.)

🏂 FracGeo

The Future of Shale Management, Today

Declining Rigs vs Rising Production

Source: EIA, Baker Hughes

Last updated: 2/26/2015

🌏 oilpro.com/post/14877/1-billion-buy-to-1-sale-japan-itochu-exits-us-shale?utm_source=weeklyNewsletter&utm_mediu 🖾 🛡 C 🛛 📿 Seal

They Sold For HOW Much?? Japanese Corp. Sells US Shale Stake For Just \$1

Japan's has sold its 25% stake in Oklahoma-based back to for \$1. Thus does end its \$1 billion foray into in US shale oil, the *Financial Times* reported Tuesday.

default in March.

Back to the drawing board

 "An estimated 40% of unconventional wells are uneconomical due to spatial variability in reservoir characteristics, lateral heterogeneity along the wellbores, accuracy of wall placement, and variability in drilling, completion, and stimulation practices"

SPE 172973

 Identify the key factors affecting these poor frac stages

Understanding the inefficiencies

FracGeo The Future of Shale Management, Today Interpretation, Nov. 2014

Understanding the inefficiencies

Search & Discovery #41135

The Future of Shale Management, Today

Understanding the inefficiencies

Faults & Fractures

- These underestimated geologic features seem to affect in many ways the performance of shale wells throughout their life cycle
- Quantifying their effects on shale performance turns out to be a major engineering challenge

Wooden stick – Picture provided by C. Newgord

Sept 18, 2014 Curiosity Rover, Planet Mars

Who is studying the effect of Young Modulus ?

DISNEY !!!

What is the highest grossing Disney Animated Movie ?

Highest-grossing animated films ^[1]						
Rank 🕈	Title 🗢	Worldwide gross 🗢	Year ‡	Ref		
1		\$1,276,472,665	2013	[# 1]		
2	Toy Story 3	\$1,063,171,911	2010	[# 2]		
3	The Lion King	\$987,483,777	1994	[# 3]		
4	Despicable Me 2	\$970,761,885	2013	[# 4]		
5	Finding Nemo	\$936,743,261	2003	[# 5]		
6	Shrek 2	\$919,838,758	2004	[# 6]		
7	Ice Age: Dawn of the Dinosaurs	\$886,686,817	2009	[# 7]		
8	Ice Age: Continental Drift	\$877,244,782	2012	[# 8]		
9	Shrek the Third	\$798,958,162	2007	[# 9]		
10	Shrek Forever After	\$752,600,867	2010	[# 10]		

The Future of Shale Management, Todau

Material Point Method and Disney's "Frozen"

Highest-grossing animated films^[1]

Rank ¢	Title 🕈	Worldwide gross 🕈	Year ¢	Ref
1	Frozen †	\$1,276,472,665	2013	[# 1]
2	Toy Story 3	\$1,063,171,911	2010	[# 2]
3	The Lion King	\$987,483,777	1994	[# 3]

Geomechanical Modeling

- The use of geomechanics is necessary to quantify the interaction between hydraulic and natural fractures
- A new geomechanical technology (Aimene & Nairn 2014, Aimene & Ouenes, 2015), that is able to simulate the interaction of hydraulic fractures with natural fractures opens new doors to derive a better understanding of frac stage performance
- The new geomechanical technology relies on the use of the Material Point Method (MPM) and a continuous description of the fractures

Material Point Method (MPM)

- Powerful tool developed for solid dynamics problems (Sulsky, Chen & Schreyer, 1994)
- Meshless method: discretization into points, called particles
- Particles handle all material information
- Background grid associated with the particles, composed of elements.
- At each time step, particles' information are extrapolated to the background grid to solve the equations of motion

	SAND93-7044 Jnlimited Release JC-705		GNUFICIE		
Ì	A Particle I Materials	Method for H	istory-Dep	pendent	
!	Deborah Sulaky, Zh The University of N Albuquerque, NM 8 ^{hepaired by Sards Nationa} Labi	en Chen, Howard L. S aw Mexico 7131 ratares Abuquengus, New Mexico 87	SANDIA NATIONAL Labortories Technical Library		
	nder Contact DE-ACO4-76DP00	n ng Grindo Jasob Unglaninon in Lina 199	147		
					P
					 <u>Crack</u>
				Ę	Top Plane Bottom
Ĭ					
					-

CONTRACTOR REPO

Equations behind MPM

• The starting point for MPM (and all dynamic numerical equations) is the momentum equation and virtual work:

- MPM is a Petrov-Galerkin Method or two basis sets for expansion
 - Expand body force, acceleration, and stress in particle basis
 - Expand virtual displacement in grid basis

$$f(oldsymbol{x}) = \sum_p f_p \chi_p(oldsymbol{x})$$
 $\delta oldsymbol{u} = \sum_i \delta oldsymbol{u}_i N_i(oldsymbol{x})$

• Leads to MPM Equation on the background grid

Fractures in MPM

CRAMP is MPM extended to handle explicit fractures (Nairn, 2003)

Fractures represented by a series of line segments with endpoints represented by massless material points

- Fracture particles influence the velocity field in the grid.
- Each node can have multiple velocity fields.
- Any number of fractures is possible
- Mesh-free path and propagation
- Robust modeling (compared to other particle methods) thanks to the grid

Fracture Mechanics

- Elastic fracture mechanics is used to model material failure and fracture propagation
- The energy release rate *G* involved in the balance of energies in fracturing media is used to compute stress singularities and predict fracture propogation
- The fracture grows when $G > G_{critic}$
- HF propagation criterion: direction of maximum energy release rate

NF Propagation using Energy Criterion

A Marcellus case study

The Future of Shale Management, Today

http://ny.water.usgs.gov/projectsummaries/CP30/Marcellus_Presentation_Williams.pdf

A complex Marcellus microseismic

Production logs

MS events & interpreted seismic lineaments

URTeC 1577009, 2013

Geophysics to get natural fractures

MS events & interpreted seismic lineaments

Seismically derived curvature as a proxy for the natural fractures

Equivalent Fracture Model (EFM) derived from fault attribute used as proxy for natural fractures

The Future of Shale Management, Today

MPM Geomechanical model

SPE 167801, 2014

Material Point Method (MPM) discretization

The Future of Shale Management, Today

Results

SPE 167801, 2014

Correlation between fracing energy and frac stage performance

- J Integral & PLT are highly correlated in the Marcellus well 4H
- J Integral as a proxy to the PLT in the Marcellus well 4H

Completion design: predicted PLT and MS

Completion	Stage 6 PLT	Stage 7 PLT	Stage 8 PLT	Stage 9 PLT	Stage 10 PLT	Total production	Microseismicit
All frac stages	3.5	5.5	7	4	0	20	9.35
No Frac stage 6	NA	5.1	6.24	4.17	0.58	16.09	6.4
No Frac stage 7	0.4	NA	6.7	5.3	0.58	12.98	7.94
No frac stage 8	3.88	4.35	NA	5.3	0	13.53	10.23
No frac stage 9	3.88	4.35	5.3	NA	0	13.53	7.76
No frac stage 10	3.4	5.3	7.18	3.41	NA	19.29	8.28
)			0		0		
5		0					0
)			0				
5							
,							
	Completion All frac stages No Frac stage 6 No Frac stage 7 No frac stage 8 No frac stage 9 No frac stage 10	Completion Stage 6 PLT All frac stages 3.5 No Frac stage 6 NA No Frac stage 7 0.4 No frac stage 8 3.88 No frac stage 9 3.88 No frac stage 10 3.4 Image: Completion of the stage 10 3.4 Image: Completion of the stage 10 3.4 Image: Completion of the stage 10 3.4	CompletionStage 6 PLTStage 7 PLTAll frac stages3.55.5No Frac stage 6NA5.1No Frac stage 70.4NANo frac stage 83.884.35No frac stage 93.884.35No frac stage 103.45.3OOO	CompletionStage 6 PLTStage 7 PLTStage 8 PLTAll frac stages3.55.57No Frac stage 6NA5.16.24No Frac stage 70.4NA6.7No frac stage 83.884.35NANo frac stage 93.884.355.3No frac stage 103.45.37.18Image: Complex Point	CompletionStage 6 PLTStage 7 PLTStage 8 PLTStage 9 PLTAll frac stages3.55.574No Frac stage 6NA5.16.244.17No Frac stage 70.4NA6.75.3No frac stage 83.884.35NA5.3No frac stage 93.884.355.3NANo frac stage 93.884.355.3NANo frac stage 103.45.37.183.41No frac stage 103.45.37.183.41	Completion Stage 6 PLT Stage 7 PLT Stage 8 PLT Stage 9 PLT Stage 9 PLT Stage 10 PLT All frac stages 3.5 5.5 7 4 0 No Frac stage 6 NA 5.1 6.24 4.17 0.58 No Frac stage 7 0.4 NA 6.7 5.3 0.58 No frac stage 8 3.88 4.35 NA 5.3 0 No frac stage 9 3.88 4.35 5.3 NA 0 No frac stage 10 3.4 5.3 7.18 3.41 NA No frac stage 10 3.4 5.3 7.18 3.41 NA Image: Provide training train	Completion Stage 6 PLT Stage 7 PLT Stage 8 PLT Stage 9 PLT Stage 10 PLT Total production All frac stages 3.5 5.5 7 4 0 20 No Frac stage 6 NA 5.1 6.24 4.17 0.58 16.09 No Frac stage 7 0.4 NA 6.7 5.3 0.58 12.98 No frac stage 8 3.88 4.35 NA 5.3 0 13.53 No frac stage 9 3.88 4.35 5.3 NA 0 13.53 No frac stage 10 3.4 5.3 7.18 3.41 NA 19.29 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Im

An Eagle Ford case study

AAPG Explorer 2013

🎄 FracGeo

The Future of Shale Management, Today

Eagle Ford case study (URTeC 1923762)

- Validation on the well south east
- Prediction on the well northwest

Large scale curvature

Coherency attribute

Differential stress field after application of regional stress

MPM grid & particles with HF and NF network

Differential stress created by the fractures

URTeC 1923762, 2014

- Differential stress field is not uniform
 - Frac stages do have different $\sigma_{Hmax} \sigma_{Hmin}$
 - Frac stages near the heel have lower differential stress

Interpreted vs predicted MS

The MPM geomechanical workflow able to predict complex microseismicity

URTeC 1923762, 2014

Validation with Tracers

A: Strain in the y direction derived from the geomechanical simulation.

- MPM shows the 3 distinguish regions
- The heel is better than the toe and the middle of the well is not performing

Predicting MS in a well that has no MS

Large scale curvature

Geomechanical workflow

MPM Discretization – grid and particles

Fracing the NW well with 11 frac stages using and engineered completion

Large spacing between frac stages 2 & 3 because of high differential stress

Geomechanical predictions vs tracers

URTeC 1923762

A: Predictions from Meek et al. (2013)

B: Microseismic predictions from MPM geomechanical simulations

- Well-developed toe area (8 to 11), fracing could be relatively successful
- Poor performance of the middle part of the well as confirmed by the tracers
- The heel stages 1 & 2 and next 3&4 show an average fracing.

B: Microseismic predictions from MPM geomechanical simulations

B: Tracers from Portis et al. (2013)

Effect of multiple fractures on proppant distribution

Thank you !

- Using Geomechanical Modeling to Quantify the Impact of Natural Fractures on Well Performance and Microseismicity: Application to the Wolfcamp, Permian Basin, URTeC 2173459, 2015
- Predicting frac stage differential stress and microseismicity using geomechanical modeling and time lapse multi-component seismic-Application to the Montney shale, SPE 174054, 2015
- Interpretation of Microseismic Using Geomechanical Modeling of Multiple Hydraulic Fractures Interacting with Natural Fractures – Application to Montney Shale, CSEG Recorder, November 2014.
- Predicting Microseismicity from Geomechanical Modeling of Multiple Hydraulic Fractures Interacting with Natural Fractures – Application to the Marcellus and Eagle Ford, URTeC 1923762, 2014
- Modeling Multiple Hydraulic Fractures Interacting with Natural Fractures Using the Material Point Method, **SPE 167801, 2014**

