


The Boom: US is biggest energy producer since 2012!

Estimated Petroleum and Natural Gas Production
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The Boom: America’s shale revolution is here to stay!

US Natural Gas and Crude Oil Production, 1949-2040 (est.)

44858 in 1971 _
445180 2013
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Aerfca s Shale Revolution

If the 1971-2005
trend continued
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u St Declining Rigs vs Rising Production

Numbar of
Active
Rgs

1600

1200
1100
1000

900

‘ m . 800
The Economist
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They Sold For HOW Much?? Japanese
Corp. Sells US Shale Stake For Just $1

Japan’s [ has sold its 25% stake in
Oklahoma-based [IINIIEEGEGEGE Hack to
I for $1. Thus doeslllend its $1 billion foray

into in US shale oil, the Financial Times reported

Tuesday.

default in March.
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Back to the drawing board

CALM

AND
PUT YOUR
THINKING CAP ON

* “An estimated 40% of unconventional wells are
uneconomical due to spatial variability in reservoir
characteristics, lateral heterogeneity along the
wellbores, accuracy of wall placement, and variability
in drilling, completion, and stimulation practices”

SPE 172973

* |dentify the key factors affecting these poor frac
stages

& FracGeo
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Understanding the inefficiencies

|
gl

“Rabbit ears”

£, Interpretation, Nov. 2014
&, Fracheo

of 5hale Management, Today




Understanding the inefficiencies

| Distance from welhore (ft}

Hiztagram of natural fractures : :
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Understanding the inefficiencies

Production Log Interpretation
Water per Oil per Gas per Water oil ! Gas
Stage Stage (%) | Stage(%) | Stage(%) | bblid) (bbl/d) | (1000 ft3/d)
26 0% 2¢ 2% 0 14| 10
25 8% 2% 49 i g
24 0% 1% 0 7| 5 :
s OB 0% b ase b _am | 0 __ | 25 1) 4z | etk
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Faults & Fractures

e These underestimated geologic features seem to
affect in many ways the performance of shale wells
throughout their life cycle

 Quantifying their effects on shale performance turns
out to be a major engineering challenge

KEEP
CALM
AND

Wooden stick — Picture provided by C. Newgord

PUT YOUR

4 == S St THINKING CAP ON
'\ l; AR s
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Who is studying the effect of Young Modulus ?

Effect of Young's Modulus
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Rank # Title ¥ Worldwide gross # Year 3 Ref
1 $1276,472.665 2013 F1

2 |Toy Story 3 $1.063171,911| 2010 @2

3 | The Lion King $987 483,777 1994 3l

4  |Despicable Me 2 $970,761,885 2013 | F4

5  |Finding Nemo $936 743,261 2003 | 5l

6 |Shrek 2 $919,838,758 2004 | Ol

7 |lce Age: Dawn of the Dinosaurs $886,686,817 2009 | 7l

8 | lce Age: Continental Drift $877,244, 782 2012 | 8

9 | Shrek the Third $798,958,162 2007 9
— 10 |Shrek Forever After $752,600,867 2010 10

What is the highest grossing Disney Animated |
Movie ?

Highest-grossing animated films!"
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Material Point Method and Dlsney s “Frozen”

g.'p MPM Algorithm
Overview

A material point method
for snow simulation

v v velocities
University of California - Los Angeles —.’e = ° P ° N o
Walt Disney Animation Studios o .:‘ o | ':‘ | :\.“
(contains P,Udlol S|GGRAPH 20| 3 meed deformation  Particle velocities Collided il |-r4 4._
° ©Disney gacants
> o © & [1,.. P o) os4/3: © ¥ O]

Highest-grossing animated films' "

Rank = Title # Worldwide gross # Year § Ref

1 Frozen t $1,276,472,665 2013 1
2 | Toy Story 3 $1,063,171,911 2010 | 2
3 | The Lion King $987,483 777 1994  #3

& Fracheo
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Geomechanical Modeling

* The use of geomechanics is necessary to quantify the
interaction between hydraulic and natural fractures

* A new geomechanical technology (Aimene & Nairn 2014,
Aimene & Ouenes, 2015), that is able to simulate the
interaction of hydraulic fractures with natural fractures opens
new doors to derive a better understanding of frac stage
performance

* The new geomechanical technology relies on the use of the
Material Point Method (MPM) and a continuous description of
the fractures

& FracGeo
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Material Point Method (MPM)

e Powerful tool developed for solid dynamics
problems (Sulsky, Chen & Schreyer, 1994)

* Meshless method: discretization into points, called
particles

e Particles handle all material information

e Background grid associated with the particles,
composed of elements.

e At each time step, particles’ information are
extrapolated to the background grid to solve the
equations of motion

Frachbeo
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A Particle Method for History-Dependent
Materials
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Equations behind MPM

* The starting point for MPM (and all dynamic numerical equations) is the
momentum equation and virtual work:

Body For\c{e Surface Traction 7“(:16 Force

pb 51.<1V =+ /ST T-oudS + Z Fp - ou Cauchy Stress
/ p g
:fpa-ﬁudv+fﬂ*vgudv
V/ 14
— Acceleration

& FracGeo
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* MPM is a Petrov-Galerkin Method - or two basis sets for expansion

* Expand body force, acceleration, and stress in particle basis
e Expand virtual displacement in grid basis

f(x) = Z prp(m)
ou = EE::iuqJV;(mﬂ

* Leads to MPM Equation on the background grid

(n) /Nodal Forces
Nodal Momenta _’dp

i _ pm) f(n)
Kirchoff Stress MPM Shape Functions
£ 3 (_mp ré”)ﬁ;oGg) t mySb, + PO S(n))
p
fi0 = Ni=z)TdSs

Frachbeo 7= s,
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Fractures in MPM

CRAMP is MPM extended to handle explicit fractures (Nairn, 2003)

above Fractures represented by a
start _~a | W (Xn:Yn) i i i
art, hl Ny series 9f line segments with
Xay)) e endpoints represented by

massless material points

* Fracture particles influence the velocity field in the grid.
* Each node can have multiple velocity fields.

* Any number of fractures is possible

* Mesh-free path and propagation

* Robust modeling (compared to other particle methods) thanks to the
grid

S Frachbeo
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Fracture Mechanics

e Elastic fracture mechanics is used to model material
failure and fracture propagation

 The energy release rate G involved in the balance of
energies in fracturing media is used to compute
stress singularities and predict fracture propogation

* The fracture grows when G > G ;. .
et
 HF propagation criterion: direction of maximum »

energy release rate
G =J Integral

S Frachbeo
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NF Propagation using
Energy Criterion Case
A=1
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Effect ofg-l

stress
anisotropy
on NF

curving

s 2

0.0

NF

>X HF
Other software tend to have
s (&) HF approaching NF (b) slippage / arrested (d) NF Dilation / HF

propagation rules that are only seen in
Ny NF .

High anisotropy situations v/ e/
] - (e) NF staying closed
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(c) crossing
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A Marcellus case study
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A complex Marcellus microseismic

Production logs

MS events & interpreted seismic lineaments

1000 ft.
—

F aEEED URTeC 1577009, 2013
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Geophysics to get natural fractures

Seismically derived curvature as a
proxy for the natural fractures




Slide 24

Equivalent Fracture Model (EFM) derived from fault attribute used as
proxy for natura| fractures

Equivalent Fracture

Fault attribute (Gray color) and the wells Model (EFM)

along with their frac stages

..53. J rECEED SPE 167801, 2014
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Importing the EFM in the geomechanlcal

simulator ya

Stage 10

Stage 6

i nuEInInE i I“ i3
lu:uuu!mmmmxnuumlmnu s
Hrtre s e e

MPM Geomechanical model

SPE 167801, 2014




Material Point Method (MPM) discretization
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3G
Workflow

Fracing
energy at
each frac

J Integral (J/m?)

Equivalent Fracture Model

MPM grid and
particles

Stage 6
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40
Stage 7.
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Results

Strain distribution in the study area

MS Events &

: SPE 167801, 2014
production log




Results
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Correlation between fracing energy and frac
stage performance

®  stages

7 @ v =-0.0943x + 8.1306
R* = 09756

(=3

[¥]

L)

Pt

Average Production from PLT
=

URTeC 1923762, 2014
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I Integral

» Jlintegral & PLT are highly correlated in the Marcellus well 4H
|

L5 R m’:rECGED « Jlntegral as a proxy to the PLT in the Marcellus well 4H
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PLT
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Completion design: predicted PLT and MS

TOTAL PRODUCTION

Completion

All frac stages
No Frac stage 6
No Frac stage 7
No frac stage 8
No frac stage 9

No frac stage 10
25

20

15

10

Stage 6
PLT

3.5

NA

0.4
3.88
3.88

34

Stage 7 Stage8 Stage9 Stage 10
PLT PLT PLT
5.5 7 4
5.1 6.24 4,17
NA 6.7 5.3

4.35 NA 5.3
4.35 5.3 NA
53 7.18 341
[+]
© o
7.5 8 8.5
MICROSEISMICITY

PLT

0

0.58

0.58

NA

Total : T
production Microseismicity
20 9.35
16.09 6.4
12.98 7.94
13.53 10.23
13.53 7.76
19.29 8.28
o

9.5 10 10.5




An Eagle Ford case study

Approx. 2000’

AAPG Explorer 2013

Lo,

MEXICO

Eagle Ford
Shale Play

& Frachbeo
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Eagle Ford case study (URTeC 1923762)

* Validation on the well south east

* Prediction on the well northwest

,\fj FF r ac GED Large scale curvature Coherency attribute

' The Future of Shale Management, Today




Geomechanical workflow

ey
L=l

e

: Equivalent Fracture Model:[l Natural Fractures
selsmlcally derived coherency: structural attribute

Eiii

5018 111 11131 1 i 1R 1

MPM grid & particles with HF and NF network

Differential stress field after application of regional stress

& FracGeo
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Differential stress created by the fractures

Olmax = OHmin

=12
Low

High

Differential stress field is not uniform URTeC 1923762, 2014
o Frac stages do have different 0y, — Onmin

3. Frcadc EEE Frac stages near the heel have lower differential stress
o

o'
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Interpreted vs predicted MS

URTeC 1923762, 2014




Validation with Tracers

C: Cross section along the wellbore showing the
microseismic density and tracer. Meek et al. (2013)

A: Strain in the y direction derived from
the geomechanical simulation.

+ MPM shows the 3 distinguish regions
« The heel is better than the toe and the  B: Tracers and microseismic event from Diakhate et al. (2015)
middle of the well is not performing

-FracGeo

3
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Predicting MS in a well that has no MS

Large scale curvature

S FracGeo
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Geomechanical workflow

. (2013) Image processing and pixilation
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MPM Discretization — grid and particles

Fracing the NW well with 11 frac stages using and engineered completion
Large spacing between frac stages 2 & 3 because of high differential stress

& FracGeo
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Geomechanical predictions vs tracers

- Predicted MSD with chemical tracers

A: Predictions from Meek et al. (2013) B: Microseismic predictions from MPM geomechanical
simulations

 Well-developed toe area (8 to 11), fracing could be relatively successful
« Poor performance of the middle part of the well as confirmed by the tracers
 The heel stages 1 & 2 and next 3&4 show an average fracing.

& FracGeo
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Infill A MS predictions vs tracers

All chemical tracers, all wellbores

B: Microseismic predictions from MPM geomechanical B: Tracers from Portis et al. (2013)
simulations
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Effect of multiple fractures on proppant
distribution
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Thank you |

* Using Geomechanical Modeling to Quantify the Impact of Natural
Fractures on Well Performance and Microseismicity: Application to
the Wolfcamp, Permian Basin, URTeC 2173459, 2015

* Predicting frac stage differential stress and microseismicity using
geomechanical modeling and time lapse multi-component seismic-
Application to the Montney shale, SPE 174054, 2015

* Interpretation of Microseismic Using Geomechanical Modeling of
Multiple Hydraulic Fractures Interacting with Natural Fractures —
Application to Montney Shale, CSEG Recorder, November 2014.

* Predicting Microseismicity from Geomechanical Modeling of
Multiple Hydraulic Fractures Interacting with Natural Fractures —
Application to the Marcellus and Eagle Ford, URTeC 1923762, 2014

* Modeling Multiple Hydraulic Fractures Interacting with Natural
Fractures Using the Material Point Method, SPE 167801, 2014

Fraceo
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