UCIRVINE

Subsurface Processes Lab

Laboratory measurements of fracture permeability alteration *Implications for field-scale systems*

Russell L. Detwiler University of California, Irvine

Jean Elkhoury Schlumberger-Doll Research Lab Pasha Ameli Vertex, Inc.

EAGHG Veyburn-Midale CO2 Monitoring ND Storage Project

Induced seismicity \rightarrow potential for leakage

Induced seismicity results from fracture generation and/or fault reactivation Can new and existing fractures provide a persistent path for leakage to near-surface aquifers?

What effect do geochemical reactions have on leakage potential?

Coupled mechanisms control permeability alteration

Recent lab-scale observations: Disparate permeability evolution in caprocks during reactive flow (mineral dissolution)

These studies each presented results from a single experiment. Difficult to isolate cause of disparate behavior...

...however, residence time of fluids differed significantly

Relative time scales (advection / reaction) influence permeability evolution

$$au_a = rac{L}{V}$$
 advective timescale $au_r = rac{b}{k}$ reactive timescale

Damköhler Number

$$Da = \frac{\tau_a}{\tau_r} = \frac{kL}{Vb}$$

Experiments in transparent analogs quantify competing geochemical and geomechanical processes

Time (hours)

Detwiler, JGR, 2008, 2010

Permeability evolution of a dissolving and deforming fractured caprock

- > 2 experiments
- Fractured dolomitic anhydrite
- Subcores from same
 10-cm core (similar
 samples)
- Flow rate differed

Experimental setting mimics reservoir conditions

~1000 psi (~7MPa)

Dimensionless time provides means for directly comparing results

Sample	Flow Rate [ml/min]	Duration [day] (hours)	Dissolved Mass [%]
EV1	0.01	180 (4320)	2.5
EV2	0.60	7 (168)	2.5

Q = flow rate c = concentration R = dissolution rate M_o = initial mass M(t) = dissolved mass at time, t

$$R(t) = Q \times c(t)$$
$$M(t) = \int_0^t R(\zeta) d\zeta$$

$$\tau = \frac{M_o}{R(t \sim 0)}$$

$$t \longrightarrow t/\tau$$

Permeability evolution very different at high and low flow rates

Fracture sealed during **HIGH** flow rate experiment

Reactive flow + mechanical stress dissolve and deform cores

The diameter of both cores decreased due to consolidation of rock adjacent to fracture.

X-ray CT scan shows the localized aperture and the consolidated dolomite layer (LOW flow rate)

200 µm voxels

RVINE

Persistence of preferential flow channel (LOW flow rate)

Optical Profilometer

= <u>-</u>

SEM imaging confirmed dolomite-rich layer

1 cm

Slicing fractured core samples, after impregnating with epoxy, allowed direct measure of fracture aperture profiles

Ameli, Elkhoury & Detwiler, WRR, in review

Enlarged preferential flow paths maintained permeability (LOW flow rate)

Reactive flow and mechanical stress alters sample geometry and strongly affects the evolution of permeability

Damköhler number

$$Da = \frac{kL}{Vb}$$

← Large Da

$$\leftarrow$$
 Small Da

- L =fracture length
- b = aperture
- k = reaction rate
- V = fluid velocity

Our results demonstrate the strong influence of Da on permeability changes caused by coupled chemical alteration and mechanical deformation in a poly-mineralic caprock

Da is inversely proportional to V and directly proportional to L Increasing L (field-scale) will have a similar effect to decreasing V at the lab scale → development of preferential flow paths is more likely at field scale.

and

Under pressure controlled conditions, sealing will decrease permeability and reduce flow (increase Da) \rightarrow increase the potential for preferential flow-path formation.

Conclusions

- Our experiments argue against the likelihood of a fractured dolomitic-anhydrite caprock sealing by the combined influence of geochemical alteration and mechanical deformation (increased Da is favorable under reservoir conditions).
- Laboratory experiments coupled with appropriate scaling analyses can provide insights into field-scale behavior.
- Our results are qualitatively consistent with previous studies, but mechanisms differ → experiments with specific mineral / fluid combinations needed to understand / predict behavior.

Subsurface Processes Lab Elkhoury, et al., Earth and Planetary Science Letters, 2015

Subsurface Processes Lab

High resolution optical profiler measures fracture surfaces from which we produce fracture aperture

Dissolved mass rate increases under high flow rate and decreases under low flow rate

Particle mobilization could clog flow path and decrease Permeability

Calcite + Dolomite (>90%) (quartz, K-feldspar, clay minerals) Temperature = 30°C

calcite dissolution along the fracture pathway

mobilization of less soluble mineral particles

clogging of flow path

Ellis et al., Env. Eng, Sci., 2013

Changes in fluid chemistry alter the sign and the rate with which fracture permeability evolves

~ 63 days

Elsworth & Yasuhara, PAGEOPH, 2006

Most transport studies, particularly of large scale systems, assume constant properties [permeability and porosity (aperture)]

Coupling/Feedback

However, large perturbations (mechanical/chemical/hydrological/thermal) from equilibrium can alter fracture aperture and permeability

Polak et al., *GRL*, 2003 Elkhoury et al., *Nature*, 2006 Elsworth et al., *PAGEOPH*, 2006 Manga et al., *Rev. Geophys.*, 2012 Elkhoury et al., *IJGGC*, 2013 Ellis et al., *Env. Eng. Sci*, 2013

- 1) Earthquake Triggering,
- 2) Reservoir permeability enhancements,
- 3) Waste isolation,
- 4) Enhanced oil recovery,
- 5) Geothermal energy production and
- 6) CO₂ sequestration

CO₂ measuring, monitoring and verification initiative

 CO_2 is captured from an industrial source and injected to revive oil production.

Subsurface Processes

Geoscience Framework Study Area 100,000 km³ Precambrian SASKATCHEWAN Villiston Basin Regina Weyburn .CHINH 4 km CANADA 5.5.4 200 km MONTANA NORTH DAK ORIEN WELLISTON BASIN SOUTH DAKOTA http://www.ptrc.ca/weyburn_overview.php WYYORRAD

Aperture field evolution

Subsurface Processes Lab

Thickness of healing zone (compacted gypsum)

Temporal evolution of effluent ion concentration

UCIRVINE

Chemistry and Pressure

Dissolution increase fracture permeability

Mineral heterogeneity We need to quantify it Is it the dominant mechanism? How about hydro-chemical mechanism?

Schematic diagram of Sample holder

