Coupled Flow and Geomechanical Modeling of Induced Seismicity in Faulted Reservoirs

Birendra Jha

Massachusetts Institute of Technology/ University of Southern California

Induces Seismicity Consortium, USC July 23, 2015

Key questions in the industry

- How much can be extracted/stored, and at what rate?
- What is the risk of triggered/induced seismicity?
- What is the risk of fluid leakage?

Geomechanical modeling of faults is essential

Birkholzer and Zhou, *IJGGC* 2009; Morris et al., *IJGGC* 2011; Szulczewski et al, *PNAS* 2012; Chiaramonte et al., *EG* 2008; Rutqvist et al, *IJGGC* 2010; Cappa and Rutqvist, *GRL* 2011; Zoback and Gorelick, *PNAS* 2012; Juanes et al., *PNAS* 2012

Induced seismicity: a rising concern

What is the mechanism?

Biot, JAP 1941 Geertsma, AIME 1957 Rice et al, RGSP 1976

What is the mechanism?

Effective normal stress on fault: $\sigma'_n = \sigma_n - bp$ Fault friction stress: $\mu_f \sigma'_n$

Fault slips (Mohr-Coulomb) if: $\tau - \mu_f \sigma'_n > 0$

Define Coulomb Failure Function: $\Delta CFF = \Delta \tau - \Delta \left[\mu_f(\sigma_n - bp)\right] > 0$

What is the mechanism?

Tendency to slip if: $\Delta CFF = \Delta \tau - \Delta \left[\mu_f (\sigma_n - bp) \right] > 0$

$$\Rightarrow \begin{cases} \Delta \tau > 0 & \text{(poroelastic loading)} \\ \Delta \sigma_n < 0 & \text{(poroelastic unloading)} \\ \Delta p > 0 & \text{(fluid injection)} \\ \Delta \mu_f < 0 & \text{(fault weakening)} \end{cases}$$

Groundwater extraction can induce fault slip

$$\Rightarrow \begin{cases} \Delta \tau > 0\\ \Delta \sigma_n < 0\\ \Delta p > 0\\ \Delta \mu_f < 0 \end{cases}$$

(poroelastic loading)
(poroelastic unloading)
(fluid injection)
(fault weakening)

Production can induce fault slip

$$\Rightarrow \begin{cases} \Delta \tau > 0 & \text{(poroelastic loading)} \\ \hline \Delta \sigma_n < 0 & \text{(poroelastic unloading)} \\ \Delta p > 0 & \text{(fluid injection)} \\ \Delta \mu_f < 0 & \text{(fault weakening)} \end{cases}$$

Injection can induce fault slip

$$\Rightarrow \begin{cases} \Delta \tau > 0\\ \Delta \sigma_n < 0\\ \Delta p > 0\\ \Delta \mu_f < 0 \end{cases}$$

(poroelastic loading)
(poroelastic unloading)
(fluid injection)
(fault weakening)

Fault slip can lead to leakage

 $\Delta k_f = f$ (slip, compression) Fault leaks if: $\Delta k_f > 0$

$$\Rightarrow \begin{cases} \Delta \tau > 0\\ \Delta \sigma_n < 0\\ \Delta p > 0\\ \boxed{\Delta \mu_f < 0} \end{cases}$$

(poroelastic loading)(poroelastic unloading)(fluid injection)(fault weakening)

How can we model it?

What are the **challenges**?

- **Coupled physics**: multiphase flow, deformation, rock failure
- Multi-scale in space and time
- Fault modeling: mechanical and hydraulic behavior in presence of multiple fluids is unknown
- **Computational challenges:** discretization of equations, coupling strategy

Multiphase poromechanics

Fluid mass conservation

- Primary unknowns: p, S_w

Linear momentum balance

- Primary unknown: **u**

Multiphase challenges

- Nonlinear because gases are compressible and phases appear/disappear
- **Defining** effective stress in presence of multiple fluid phases
- Coupling is pervasive.

State variables: pressures, saturations, displacement

Material coefficients: bulk density, poroelastic coefficients and moduli, pore compressibility, porosity, permeability

Coussy, 1995 13

Seismicity is induced due to rupture of a fault

Structural interpretation of a fault

surface of discontinuity

zone of different properties

Chester et al., *J. Geophy. Res.* 1993 Anderson, *Tectonophy* 1983 Marone, *Ann. Rev. EPS*, 1998 ¹⁵

Structural interpretation in our framework

surface of discontinuity, with different properties across the surface

d: fault slip vector n: normal vector δ : dip angle

Functional interpretation of a fault

Fault friction and strength evolve *non-linearly* and *dynamically*

Friction depends on rate of sliding and history of sliding

Functional interpretation in our framework

A block-spring model under quasi-dynamic sliding

Friction model:

$$\mu_{f} = \mu_{0} + A \ln \left(\frac{V}{V_{0}} + B \ln \left(\frac{V_{0}\theta}{d_{c}} \right) \right)$$

$$\frac{d\theta}{dt} = 1 - \frac{\theta V}{d_{c}}, \qquad Slip \ velocity \qquad Slip \ history \ parameter$$

Coupled multiphase flow and geomechanics simulator

(Jha and Juanes, Water Resour. Res. 2014)

- Computationally efficient sequential solution
- Sophisticated formulation for fault slip
- Flow along and across fault, fracture propagation
- Viscoelastic and elastoplastic rheology
- Field-scale (unstructured grid, complex productioninjection scenarios, parallel computing)

The 2012 Emilia seismicity

- Sequence of earthquakes (M_w = 6, M_w = 5.8) in May 2012 near the Cavone oil field in Italy

- Raised the question: Was it induced by production/injection?
- We address the question by means of coupled flow and geomechanical modeling, integration of geologic constraints, seismic observations, and historical production/injection

Cavone oilfield

(Top view)

• Oil production started in 1980. Injection of produced water began in 1993. 16 producers, 1 injector. Strong aquifer support. Compartmentalized.

Seismically active even before May 2012

Multiple seismogenic faults

Seismicity recorded during 01/11 - 02/13

Mw=6 event occurred on Middle Ferrara fault, 9 days later, Mw=5.8 occurred on Mirandola fault

3D model

Structural model (29x24x20 km)

Non-trivial because of steeply dipping reservoir, and pinch-out against fault

Mirandola fault

Geomechanical grid

Shear and normal fault tractions due to pressure drop

Fault stability evolves in time with prod and inj

Increase in Coulomb stress is localized, and not enough to trigger seismicity

Conclusions

- A new computational framework to model the coupled processes of flow and deformation in faulted, stress-sensitive reservoirs
- A promising approach for assessment and management of risk due to induced seismicity
- Post-mortem analysis of earthquakes, poroelastic inversion to estimate reservoir properties