
Chapter 2
Scalar Quantization

An audio signal is a representation of sound waves usually in the form of sound
pressure level that varies with time. Such a signal is continuous both in value and
time, hence carries an infinite amount of information.

The first step of significant compression is accomplished when a continuous-time
audio signal is converted into a discrete-time signal using sampling. In what consti-
tutes uniform sampling, the simplest sampling method, the continuous-time signal
is sampled at a regular interval T , called sampling period. According to Nyquist–
Shannon sampling theorem [65, 68], the original continuous-time signal can be
perfectly reconstructed from the sampled discrete-time signal if the continuous-
time signal is band-limited and its bandwidth is no more than half of the sample
rate (1=T ). Therefore, sampling accomplishes a tremendous amount of lossless
compression if the source signal is ideally bandlimited.

After sampling, each sample of the discrete-time signal has a value that is contin-
uous, so the number of possible distinct output values is infinite. Consequently, the
number of bits needed to represent and/or convey such a value exactly to a recipient
is unlimited.

For the human ear, however, an exact continuous sample value is unnecessary
because the resolution that the ear can perceive is very limited. Many believe that it
is less than 24 bits. So a simple scheme of replacing an analog sample value with
an integer value that is closet to it would not only satisfy the perceptual capability
of the ear, but also removes a tremendous deal of imperceptible information from a
continuously valued signal. For example, the hypothetical “analog” samples in the
left column of Table 2.1 may be represented by the respective integer values in the
right column. This process is called quantization.

The underlying mechanism for quantizing the sample values in Table 2.1 is to
divide the real number line into real intervals and then map each of such interval
to an integer value. This is shown in Table 2.2, which is call a quantization table.
The quantization process actually involves three steps as shown in Fig. 2.1 and
explained below:

Forward Quantization. A source sample value is used to look up the left col-
umn to find the interval, referred to as decision interval, that it falls into and the
corresponding index, referred to as quantization index, in the center column is then
identified. This mapping is referred to as encoder mapping.
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Table 2.1 An example of mapping “analog” sample values to integer
values that would take place in a process called quantization

“Analog” sound pressure level Integer sound pressure level

�3.4164589759 � � � �3

�3.124341 � � � �3

�2.14235 � � � �2

�1.409086743 � � � �1

�0.61341984378562890423 � � � �1

0.37892458 � � � 0

0.61308 � � � 1

1.831401348156 � � � 2

2.8903219654710 � � � 2

3.208913064 � � � 3

Table 2.2 Quantization table that maps source sample
intervals in the left column to integer values in the right
column

Sample value interval Index Integer value

(�1, �2.5) 0 �3

Œ �2.5, �1.5) 1 �2

Œ �1.5, �0.5) 2 �1

Œ �0.5, 0.5) 3 0

Œ0.5, 1.5) 4 1

Œ1.5, 2.5) 5 2

Œ2.5, 1) 6 3

Fig. 2.1 Quantization involves an encoding or forward quantization stage represented by “Q”,
which maps an input value to the quantization index, and a decoding or inverse quantization stage
represented by “Q�1”, which maps the quantization index to the quantized value

Index Transmission. The quantization index is transmitted to the receiver.

Inverse Quantization. Upon receiving the quantization index, the receiver uses it to
read out the integer value, referred to as the quantized value, in the right column.
This mapping is referred to as decoder mapping.

The quantization table above maps sound pressure levels with infinite range and
resolution into seven integers, which need only 3 bits to represent, thus achieving
a great deal of data compression. However, this comes with a price: much of the
original resolution is lost forever. This loss of information may be significant, but it
was done on purpose: those lost pieces of information are irrelevant to our needs or
perception, we can afford to discard them.
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2.1 Scalar Quantization

To pose the quantization process outlined above mathematically, let us consider a
source random variable X with a probability density function (PDF) of p.X/.
Suppose that we wish to quantize this source with M decision intervals defined by
the following M C 1 endpoints

bq; q D 0; 1; : : : ; M; (2.1)

referred to as decision boundaries, and with the following M quantized values,

Oxq ; q D 1; 2; : : : ; M; (2.2)

which are also called output values or representative values. A source sample
value x is quantized to the quantization index q if and only if x falls into the qth
decision interval

ıq D Œbq�1; bq/; (2.3)

so the operation of forward quantization is

q D Q.x/; if and only if bq�1 � x < bq: (2.4)

The quantized value can be reconstructed from the quantization index by the fol-
lowing inverse quantization

Oxq D Q�1.q/; (2.5)

which is also referred to as backward quantization. Since q is a function of x as
shown in (2.4), Oxq is also a function of x and can be written as:

Ox.x/ D Oxq D Q�1 ŒQ.x/� : (2.6)

This quantization scheme is called scalar quantization (SQ) because the source
signal is quantized one sample each time.

The function in (2.6) is another approach to describing the input–output map of
a quantizer, in addition to the quantization table. Figure 2.2 is such a function that
describe the quantization map of Table 2.2.

The quantization operation in (2.4) obviously causes much loss of information,
the reconstructed quantized value obtained in (2.5) or (2.6) is different than the input
to the quantizer. The difference between them is called quantization error

q.x/ D Ox.x/ � x: (2.7)

It is also referred to as quantization distortion or quantization noise.
Equation (2.7) may be rewritten as

Ox.x/ D x C q.x/; (2.8)

so the quantization process is often modeled as an additive noise process as shown
in Fig. 2.3.
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Fig. 2.2 Input–output map for the quantizer shown in Table 2.2

+ 

Fig. 2.3 Additive noise model for quantization

The average loss of information introduced by quantization may be characterized
by average quantization error. Among the many norms that may be used to measure
this error, the L-2 norm or Euclidean distance is usually used and is called mean
squared quantization error (MSQE):

�2
q D

Z 1

�1
q2.x/p.x/dx

D
Z 1

�1
. Ox.x/ � x/2p.x/dx

D
MX

qD1

Z bq

bq�1

. Ox.x/ � x/2p.x/dx (2.9)
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Since Ox.x/ D Oxq is a constant within the decision interval Œbq�1; bq/, we have

�2
q D

MX
qD1

Z bq

bq�1

. Oxq � x/2p.x/dx: (2.10)

The MSQE may be better appreciated when compared with the power of the
source signal. This may be achieved using signal-to-noise ratio (SRN) defined
below

SNR (dB) D 10 log10

 
�2

x

�2
q

!
; (2.11)

where �2
x is the variance of the source signal.

It is obvious that the smaller the decision intervals, the smaller the error term
. Oxq � x/2 in (2.10), thus the smaller the mean squared quantization error �2

q . This
indicates that �2

q is inversely proportional to the number of decision intervals M .
The placement of each individual decision boundary and the quantized value also
play major roles in the final �2

q . The problem of quantizer design may be posed in a
variety of ways, including:

� Given a fixed M :

M D Constant; (2.12)

find the optimal placement of decision boundaries and quantized values so that
�2

q is minimized. This is the most widely used approach.
� Given a distortion constraint:

�2
q < Threshold; (2.13)

find the optimal placement of decision boundaries and quantized values so that
M is minimized. A minimal M means a minimal number of bits needed to rep-
resent the quantized value, hence a minimal bit rate.

2.2 Re-Quantization

The quantization process was presented above with the assumption that the source
random variable or sample values are continuous or analog. Quantization by name
usually gives the impression that it were only for quantizing analog sample val-
ues. When dealing with such analog source sample values, the associated forward
quantization is referred to as ADC (analog-to-digital conversion) and the inverse
quantization as DAC (digital-to-analog conversion).
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Table 2.3 An quantization table for “re-quantizing” a discrete
source

Decision interval Quantization index Re-quantized value

Œ 0, 10) 0 5

Œ 10, 20) 1 15

Œ 20, 30) 2 25

Œ 30, 40) 3 35

Œ 40, 50) 4 45

Œ 50, 60) 5 55

Œ 60, 70) 6 65

Œ 70, 80) 7 75

Œ 80, 90) 8 85

Œ 90, 100) 9 95

Discrete sources sample values can also be further quantized. For example,
consider a source that takes integer sample values between 0 through 100. If it is
decided, for some reason, that this resolution is too much or irrelevant for a partic-
ular application and sample values spaced at an interval of 10 are really what are
needed, a quantization table shown in Table 2.3 can be established to re-quantize
the integer sample values.

With discrete sources sample values, the formulation of quantization process in
Sect. 2.1 is still valid with the replacement of probability density function with prob-
ability distribution function and integration with summation.

2.3 Uniform Quantization

Both quantization Tables 2.2 and 2.3 are the embodiment of uniform quantization,
which is the simplest among all quantization schemes. The decision boundaries of
a uniform quantizer are equally spaced, so its decision intervals are all of the same
length and can be represented by a constant called quantization step size. For exam-
ple, the quantization step size for Table 2.2 is 1 and for Table 2.3 is 10.

When an analog signal is uniformly sampled and subsequently quantized using
a uniform quantizer, the resulting digital representation is called pulse-code modu-
lation (PCM). It is the default form of representation for many digital signals, such
as speech, audio, and video.

2.3.1 Formulation

Let us consider a uniform quantizer that covers an interval of ŒXmin; Xmax� of a
random variable X with M decision intervals. Since its quantization step size is
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� D Xmax � Xmin

M
; (2.14)

its decision boundaries can be represented as

bq D Xmin C � � q; q D 0; 1; : : : ; M: (2.15)

The mean of an decision interval is often selected as the quantized value for that
interval:

Oxq D Xmin C � � q � 0:5�; q D 1; 2; : : : ; M: (2.16)

For such a quantization scheme, the MSQE in (2.10) becomes

�2
q D

MX
qD1

Z XminC��q

XminC��.q�1/

.Xmin C � � q � 0:5� � x/2p.x/dx: (2.17)

Let
y D Xmin C � � q � 0:5� � x;

(2.17) becomes

�2
q D

MX
qD1

Z 0:5�

�0:5�

y2p ŒXmin C � � q � .y C 0:5�/�2 dy: (2.18)

Plugging in (2.15), (2.18) becomes

�2
q D

MX
qD1

Z 0:5�

�0:5�

x2p
�
bq � .x C 0:5�/

�
dx: (2.19)

Plugging in (2.16), (2.18) becomes

�2
q D

MX
qD1

Z 0:5�

�0:5�

x2p. Oxq � x/dx: (2.20)

2.3.2 Midtread and Midrise Quantizers

There are two major types of uniform quantizers. The one shown in Fig. 2.2 is called
midtread because it has zero as one of its quantized values. It is useful for situations
where it is necessary for the zero value to be represented. One such example is
control systems where a zero value needs to be accurately represented. This is also
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important for audio signals because the zero value is needed to represent the absolute
quiet. Due to the midtreading of zero, the number of decision intervals (M ) is odd
if a symmetric sample value range (Xmin D �Xmax) is to be covered.

Since both the decision boundaries and the quantized values can be represented
by a single step size, the implementation of the midtread uniform quantizer is simple
and straight forward. The forward quantizer may implemented as

q D round
� x

�

�
(2.21)

where round.�/ is the rounding function which returns the integer that is closest to
the input. The corresponding inverse quantizer may be implemented as

Oxq D q�: (2.22)

The other uniform quantizer does not have zero as one of its quantized values,
so is called midrise. This is shown in Fig. 2.4. Its number of decision intervals is
even if a symmetric sample value range is to be covered. The forward quantizer may
implemented as

q D
(

truncate
�

x
�

�C 1; if x > 0I
truncate

�
x
�

� � 1; otherwiseI (2.23)

Fig. 2.4 An example of midrise quantizer
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where truncate.�/ is the truncate function which returns the integer part of the
input, without the fractional digits. Note that q D 0 is forbidden for a midrise
quantizer. The corresponding inverse quantizer is expressed below

Oxq D
(

.q � 0:5/�; if q > 0I

.q C 0:5/�; otherwise:
(2.24)

2.3.3 Uniformly Distributed Signals

As seen in (2.20), the MSQE of a uniform quantizer depends on the probabil-
ity density function. When this density function is uniformly distributed over
ŒXmin; Xmax�:

p.x/ D 1

Xmax � Xmin
; x 2 ŒXmin; Xmax�; (2.25)

(2.20) becomes

�2
q D 1

Xmax � Xmin

MX
qD1

Z 0:5�

�0:5�

y2dx

D 1

Xmax � Xmin

MX
qD1

�3

12

D M

Xmax � Xmin

�3

12

Due to the step size given in (2.14), the above equation becomes

�2
q D �2

12
: (2.26)

For the uniform distribution in (2.25), its variance (signal power) is

�2
x D 1

Xmax � Xmin

Z Xmax

Xmin

x2dx D .Xmax � Xmin/2

12
; (2.27)
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so the signal-to-noise ratio (SNR) of the uniform quantizer is

SNR (dB) D 10 log10

 
�2

x

�2
q

!

D 10 log10

�
.Xmax � Xmin/2

12

12

�2

	

D 20 log10

�
Xmax � Xmin

�

	
(2.28)

Due to the step size given in (2.14), the above SNR expression becomes

SNR (dB) D 20 log10.M / D 20

log2.10/
log2.M / � 6:02 log2.M /: (2.29)

If the quantization indexes are represented using fixed-length codes, each codeword
can be represented using

R D ceil Œlog2.M /� bits; (2.30)

which is referred as bits per sample or bit rate. Consequently, (2.29) becomes

SNR (dB) D 20

log2.10/
R � 6:02R dB; (2.31)

which indicates that, for each additional bit allocated to the quantizer, the SNR is
increased by about 6.02 dB.

2.3.4 Nonuniformly Distributed Signals

Most signals, and audio signals in particular, are rarely uniformly distributed. As
indicated by (2.20), the contribution of each quantization error to the MSQE is
weighted by the probability density function. A nonuniform distribution means that
the weighting is different now, so a different MSQE is expected and is discussed in
this section.

2.3.4.1 Granular and Overload Error

A nonuniformly distributed signal, such as Gaussian, is usually not bounded, so the
dynamic range ŒXmin; Xmax� of a uniform quantizer cannot cover the whole range
of the source signal. This is illustrated in Fig. 2.5. The areas beyond ŒXmin; Xmax�

are called overload areas. When a source sample falls into an overload area, the
quantizer can only assign either the minimum or the maximum quantized value to it:
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Fig. 2.5 Overload and granular quantization errors

Ox.x/ D



Xmax � 0:5�; if x > XmaxI
Xmin C 0:5�; if x < Xmin:

(2.32)

This introduces additional quantization error, called overload error or overload
noise. The mean squared overload error is obviously the following

�2
q.overload/ D

Z 1

Xmax

Œx � .Xmax � 0:5�/�2 p.x/dx

C
Z Xmin

�1
Œx � .Xmin C 0:5�/�2 p.x/dx: (2.33)

The MSQE given in (2.17) only accounts for quantization error within
ŒXmin; Xmax�, which is referred to as granular error or granular noise. The total
quantization error is

�2
q.total/ D �2

q C �2
q.overload/: (2.34)

For a given PDF p.x/ and the number of decision intervals M , (2.17) indicates
that the smaller the quantization step size � is, the smaller the granular quantization
noise �2

q becomes. According to (2.14), however, the smaller quantization step size
� also translates into smaller �Xmin and Xmax for a fixed M . Smaller �Xmin and
Xmax obviously leads to larger overload areas, hence a larger overload quantization
error �2

q.overload/
. Therefore, the choice of �, or equivalently the range ŒXmin; Xmax�

of the uniform quantizer, represents a trade-off between granular and overload quan-
tization errors.

This trade-off is, of course, relative to the effective width of the given PDF,
which may be characterized by its variance � . The ratio of the quantization range
ŒXmin; Xmax� over the signal variance

Fl D Xmax � Xmin

�
; (2.35)

called the loading factor, is apparently a good description of this trade-off. For
Gaussian distribution, a loading factor of 4 means that the probability of input
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samples going beyond the range is 0.045. For a loading factor of 6, the probability
reduces to 0.0027. For most applications, 4� loading is sufficient.

2.3.4.2 Optimal SNR and Step Size

To find the optimal quantization step size � that gives the minimum total MSQE
�2

q.total/, let us drop (2.17) and (2.33) into (2.34) to obtain

�2
q.total/ D

MX
qD1

Z XminC��q

XminC��.q�1/

Œx � .Xmin C � � q � 0:5�/�2 p.x/dx

C
Z 1

Xmax

Œx � .Xmax � 0:5�/�2 p.x/dx

C
Z Xmin

�1
Œx � .Xmin C 0:5�/�2 p.x/dx: (2.36)

Usually, a uniform quantizer is symmetrically designed such that

�Xmin D Xmax: (2.37)

Then (2.14) becomes

� D 2Xmax

M
: (2.38)

Replacing all Xmin and Xmax with � using the above equations, we have

�2
q.total/ D

MX
qD1

Z .q�0:5M/�

.q�1�0:5M/�

Œ.q � 0:5 � 0:5M /� � x�2 p.x/dx

C
Z 1

0:5M�

Œx � 0:5.M � 1/��2 p.x/dx

C
Z �0:5M�

�1
Œx C 0:5.M � 1/��2 p.x/dx: (2.39)

Assuming a symmetric PDF:

p.�x/ D p.x/ (2.40)

and doing a variable change of y D �x in the last term of (2.39), it turns out that
this last term becomes the same as the second term, so (2.39) becomes
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�2
q.total/ D

MX
qD1

Z .q�0:5M/�

.q�1�0:5M/�

Œ.q � 0:5 � 0:5M /� � x�2 p.x/dx

C2

Z 1

0:5M�

Œx � 0:5.M � 1/��2 p.x/dx (2.41)

Now that both (2.39) and (2.41) are only a function of �, their minimum can be
found by setting their respective first order derivative against � to zero:

@

@�
�2

q.total/ D 0: (2.42)

This equation can be solved using a variety of numerical methods, see [76], for
example.

Figure 2.6 shows optimal SNR achieved by a uniform quantizer at various bits
per sample (see (2.30)) for Gaussian, Laplacian, and Gamma distributions [33]. The
SNR given in (2.31) for uniform distribution, which is the best SNR that a uniform
quantizer can achieve, is plotted as the bench mark. It is a straight line in the form of

SNR(R) D a C bR (dB); (2.43)

with a slope of

b D 20

log2.10/
� 6:02 (2.44)

and an intercept of
a D 0: (2.45)

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

50

O
pt

im
al

 S
N

R
 (

dB
)

Bits Per Sample

 

 

Uniform
Gaussian
Laplacian
Gamma

Fig. 2.6 Optimal SNR achieved by a uniform quantizer for uniform, Gaussian, Laplacian, and
Gamma distributions
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Apparently, the curves for other PDF’s also seem to fit a straight line with
different slopes and intercepts. Notice that both the slope b and the intercept a

decrease as the peakedness or kurtosis of the PDF increases in the order of uni-
form, Gaussian, Laplacian, and Gamma, indicating that the overall performance of
a uniform quantizer is inversely related to PDF kurtosis. This degradation in perfor-
mance is mostly reflected in the intercept a. The slope b is only moderately affected.

There is, nevertheless, reduction in slope when compared with the uniform
distribution. This reduction indicates that the quantization performance for other
distributions relative to the uniform distribution becomes worse at higher bit rates.

Figure 2.7 shows the optimal step size normalized by the signal variance,
�opt=�x , for Gaussian, Laplacian, and Gamma distributions as a function of the
number of bits per sample [33]. The data for uniform distribution is used as the
benchmark. Due to (2.14), (2.27) and (2.30), the normalized quantization step size
for the uniform distribution is

log10

�
�

�x

	
D log10

�
2p
3

	
� log2.M /

log2 10
D log10

�
2p
3

	
� R

log2 10
; (2.46)

so it is a straight line. Apparently, as the peakedness or kurtosis increases in the
order of uniform, Gaussian, Laplacian, and Gamma distributions, the step size
also increases. This is necessary for optimal balance between granular and over-
load quantization errors: an increased kurtosis means that the probability density is
spread more toward the tails, resulting more overload error, so the step size has to
be increased to counteract this increased overload error.
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Fig. 2.7 Optimal step size used by a uniform quantizer to achieve optimal SNR for uniform,
Gaussian, Laplacian, and Gamma distributions
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The empirical formula (2.43) is very useful for estimating the minimal total
MSQE for a particular quantizer, given the signal power and bit rate. In particu-
lar, dropping in the SNR definition in (2.11) to (2.43), we can represent the total
MSQE as

10 log10 �2
q D 10 log10 �2

x � a � bR (2.47)

or

�2
q D 10�0:1.aCbR/�2

x : (2.48)

2.4 Nonuniform Quantization

Since the MSQE formula (2.10) indicates that the quantization error incurred by a
source sample x is weighted by the PDF p.x/, one approach to reduce MSQE is
to reduce quantization error in densely distributed areas where the weight is heavy.
Formula (2.10) also indicates that the quantization error incurred by a source sam-
ple value x is actually the distance between it and the quantized value Ox, so large
quantization errors are caused by input samples far away from the quantized value,
i.e., those which are near the decision boundaries. Therefore, reducing quantization
errors in densely distributed areas necessitates using smaller decision intervals. For
a given number of decision intervals M , this also means that larger decision inter-
vals need to be placed to the rest of the PDF support so that the whole input range
is covered.

From the perspective of resource allocation, each quantization index is a piece of
bit resource that is allocated in the course of quantizer design, and there are only M

pieces of resources. A quantization index is one-to-one associated with a quantized
value and decision interval, so a piece of resource is considered as consisting of a
set of quantization index, quantized value, and a decision interval. The problem of
quantizer design may be posed as optimal allocation of these resources to minimize
the total MSQE. To achieve this, each piece of resources should be allocated to
carry the same share of quantization error contribution to the total MSQE. In other
words, the MSQE conbribution carried by individual pieces of resources should be
“equalized”.

For a uniform quantizer, its resources are allocated uniformly, except for the first
and last quantized values which cover the overload areas. As shown at the top of
Fig. 2.8, its resources in the tail areas of the PDF are not fully utilized because low
probability density or weight causes them to carry too little MSQE contribution.
Similarly, its resources in the head area are over utilized because high probability
density or weight causes them to carry too much MSQE contribution. To reduce the
overall MSQE, those mis-allocated resources need to be re-distribute in such a way
that the MSE produced by individual pieces of resource are equalized. This is shown
at the bottom of Fig. 2.8.
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Resources are nonuniformly allocated for a nonuniform quantizer

PDF

x 

Fig. 2.8 Quantization resources are under-utilized by the uniform quantizer (top) in the tail areas
and over-utilized in the head area of the PDF. These resources are re-distributed in the nonuni-
form quantizer (bottom) so that individual pieces of resources carry the same amount of MSQE
contribution, leading to smaller MSQE

The above two considerations indicates that the MSQE can be reduced by assign-
ing the size of decision intervals inversely proportional to the probability density.
The consequence of this strategy is that the more densely distributed the PDF is,
the more densely placed the decision intervals can be, thus the smaller the MSQE
becomes.

One approach to nonuniform quantizer design is to post it as an optimization
problem: finding the quantization intervals and quantized values that minimizes the
MSQE. This leads to the Lloyd-Max algorithm. Another approach is to transform
the source signal through a nonlinear function in such a way that the transformed
signal has a PDF that is almost uniform, then a uniform quantizer may be used to
deliver improved performance. This leads to companding.
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2.4.1 Optimal Quantization and Lloyd-Max Algorithm

Given a PDF p.x/ and a number of decision intervals M , one approach to the design
of a nonuniform quantizer is to find the set of decision boundaries fbqgM

0 and quan-
tized values f OxqgM

1 such that the MSQE in (2.10) is minimized. Towards the solution
of this optimization problem, let us first consider the following partial derivative

@�2
q

@ Oxq

D 2

Z bq

bq�1

. Oxq � x/p.x/dx

D 2 Oxq

Z bq

bq�1

p.x/dx � 2

Z bq

bq�1

xp.x/dx: (2.49)

Setting it to zero, we have

Oxq D
R bq

bq�1
xp.x/dx

R bq

bq�1
p.x/dx

; (2.50)

which indicates that the quantized value for each decision interval is the centroid of
the probability mass in the interval.

Let us now consider another partial derivative

@�2
q

@bq

D . Oxq � bq/2p.bq/ � . OxqC1 � bq/2p.bq/ (2.51)

Setting it to zero, we have

bq D 1

2
. Oxq C OxqC1/; (2.52)

which indicates that the decision boundary is simply the midpoint of the neighboring
quantized values.

Solving (2.50) and (2.52) would give us the optimal set of decision boundaries
fbqgM

0 and quantized values f OxqgM
1 that minimizes �2

q . Unfortunately, to solve
(2.50) for Oxq we need bq�1 and bq , but to solve (2.52) for bq we need Oxq and OxqC1.
The problem is a little difficult.

2.4.1.1 Uniform Quantizer as a Special Case

Let us consider a simple case where the probability distribution is uniform as given
in (2.25). For such a distribution, (2.50) becomes

Oxq D bq�1 C bq

2
: (2.53)
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Incrementing q for this equation, we have

OxqC1 D bq C bqC1

2
: (2.54)

Dropping (2.53) and (2.54) into (2.52), we have

4bq D bq�1 C bq C bq C bqC1; (2.55)

which leads us to
bqC1 � bq D bq � bq�1: (2.56)

Let us denote
bq � bq�1 D �; (2.57)

plugging it into (2.56), we have

bqC1 � bq D �: (2.58)

Therefore, we can conclude by induction on q that all decision boundaries are
uniformly spaced.

For quantized values, let us subtract (2.53) from (2.54) to give

OxqC1 � Oxq D bqC1 � bq C bq � bq�1

2
: (2.59)

Plugging in (2.57) and (2.58), we have

OxqC1 � Oxq D �; (2.60)

which indicates that the quantized values are also uniformly spaced. Therefore, uni-
form quantizer is optimal for uniform distribution.

2.4.1.2 Lloyd-Max Algorithm

Lloyd-Max algorithm is an iterative procedure for solving (2.50) and (2.52) for
an arbitrary distribution, so an optimal quantizer is also referred to as Lloyd-Max
quantizer. Note that its convergence is not proven, but only experimentally found.

Before presenting the algorithm, let us first note that we already know the first
and last decision boundaries:

b0 D Xmin and bM D Xmax: (2.61)

For unbounded inputs, we may set Xmin D �1 and/or Xmax D 1. Also, we rear-
range (2.52) into

OxqC1 D 2bq � Oxq ; (2.62)
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The algorithm involves the following iterative steps:

1. Make a guess for Ox1.
2. Let q D 1.
3. Plugging Oxq and bq�1 into (2.50) to solve for bq . This may be done by integrat-

ing the two integrals in (2.50) forward from bq�1 until the equation holds.
4. Plugging Oxq and bq into (2.62) to get a new OxqC1.
5. Let q D q C 1.
6. Go back to step 3 unless q D M .
7. When q D M , calculate

� D OxM �
R bM

bM�1
xp.x/dxR bM

bM�1
p.x/dx

(2.63)

8. Stop if
j� j < predetermined threshold: (2.64)

9. Decrease Ox1 if � > 0 and increase Ox1 otherwise.
10. Go back to step 2.

A little explanation is in order for (2.63). The iterative procedure provides us
with an OxM upon entering step 7, which is used as the first term to the right of
(2.63). On the other hand, since we know bM from (2.61), we can use it with bM�1

provided by the procedure to obtain another estimate of OxM using (2.50). This is
given as the second term on the right side of (2.63). The two estimates of the same
OxM should be equal if equations (2.50) and (2.52) are solved. Therefore, we stop the
iteration at step 8 when the absolute value of their difference is smaller than some
predetermined threshold.

The adjustment procedure for Ox1 at step 9 can also be easily explained. The
iterative procedure is started with a guess for Ox1 at step 1. Based on this guess, a
whole set of decision boundaries fbqgM

0 and quantized values f OxqgM
1 are obtained

from step 2 through step 8. If the guess is off, the whole set derived from it is off.
In particular, if the guess is too large, the resulting OxM will be too large. This will
cause � > 0, so Ox1 needs to be reduced; and vice versa.

2.4.1.3 Performance Gain

Figure 2.9 shows optimal SNR achieved by Lloyd-Max algorithm for uniform,
Gaussian, Laplacian, and Gamma distributions against the number of bits per sam-
ple [33]. Since the uniform quantizer is optimal for uniform distribution, its optimal
SNR curve in Fig. 2.9 is the same as in Fig. 2.6, thus can serve as the reference. No-
tice that the optimal SNR curves for the other distributions are closer to this curve
in Fig. 2.9 than in Fig. 2.6. This indicates that, for a given number of bits per sam-
ple, optimal nonuniform quantization achieves better SNR than optimal uniform
quantization.
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Fig. 2.9 Optimal SNR versus bits per sample achieved by Lloyd-Max algorithm for uniform,
Gaussian, Laplacian, and Gamma distributions

Apparently, the optimal SNR curves in Fig. 2.9 also fit straight lines well, so can
be approximated by the same equation given in (2.43) with improved slope b and
intercept a. The improved performance of nonuniform quantization results in better
fitting to a straight line than those in Fig. 2.6.

Similar to uniform quantization in Fig. 2.6, both the slope b and the intercept
a decrease as the peakedness or kurtosis of the PDF increases in the order of uni-
form, Gaussian, Laplacian, and Gamma, indicating that the overall performance of
a Lloyd–Max quantizer is inversely related to PDF kurtosis. Compared with the uni-
form distribution, all other distributions have reduced slopes b, indicating that their
performance relative to the uniform distribution becomes worse as the bit rate in-
creases. However, the degradations of both a and b are less conspicuous than those
in Fig. 2.6.

In order to compare the performance between Lloyd-Max quantizer and uniform
quantizer, Fig. 2.10 shows optimal SNR gain of Lloyd-Max quantizer over uniform
quantizer for uniform, Gaussian, Laplacian, and Gamma distributions:

Optimal SNR Gain D SNRNonuniform � SNRUniform;

where SNRNonuniform is taken from Fig. 2.9 and SNRUniform from Fig. 2.6. Since the
Lloyd-Max quantizer for uniform distribution is a uniform quantizer, the optimal
SNR gain is zero for uniform distribution. It is obvious that the optimal SNR gain is
more profound when the distribution is more peaked or is of larger kurtosis.
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Fig. 2.10 Optimal SNR gain of Lloyd-Max quantizer over uniform quantizer for uniform,
Gaussian, Laplacian, and Gamma distributions

2.4.2 Companding

Finding the whole set of decision boundaries fbqgM
0 and quantized values f OxqgM

1

for an optimal nonuniform quantizer using Lloyd-Max algorithm usually involves a
large number of iterations, hence may be computationally intensive, especially for
a large M . The storage requirement for these decision boundaries and quantization
values may also become excessive, especially for the decoder. Companding is an
alternative.

Companding is motivated by the observation that a uniform quantizer is simple
and effective for a matching uniformly distributed source signal. For a nonuniformly
distributed source signal, one could use a nonlinear function f .x/ to convert it into
another one with a PDF similar to a uniform distribution. Then the simple and effec-
tive uniform quantizer could be used. After the quantization indexes are transmitted
to and subsequently received by the decoders, they are first inversely quantized to
reconstruct the uniformly quantized values and then the inverse function f �1.x/ is
applied to produce the final quantized values. This process is illustrated in Fig. 2.11.

The nonlinear function in Fig. 2.11 is called a compressor because it usually
has a shape similar to that shown in Fig. 2.12 that stretches the source signal when
its sample value is small and compresses it otherwise. This shape of compression
is to match the typical shape of PDF, such as Gaussian and Laplacian, which has
large probability density for small absolute sample values and tails off towards large
absolute sample values, in order to make the converted signal have a PDF similar to
a uniform distribution.
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Fig. 2.11 The source sample value is first converted by the compressor into another one with a
PDF similar to a uniform distribution. It is then quantized by a uniform quantizer and the quanti-
zation index is transmitted to the decoder. After inverse quantization at the decoder, the uniformly
quantized value is converted by the expander to produce the final quantized value
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Fig. 2.12 �-Law companding deployed in North American and Japanese telecommunication
systems

The inverse function is called an expander because the inverse of compression
is expansion. After the compression-expansion, hence “companding”, the effective
decision boundaries when viewed from the expander output is nonuniform, so the
overall effect is nonuniform quantization.

When companding is actually used in speech and audio applications, additional
considerations are given to the perceptual properties of the human ear. Since the per-
ception of loudness by the human ear may be considered as logarithmic, logarithmic
companding is widely used.

2.4.2.1 Speech Processing

In speech processing, the �-law companding, deployed in North American and
Japanese telecommunication systems, has a compression function given by [33]
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y D f .x/ D sign.x/
ln.1 C �jxj/

ln.1 C �/
; �1 � x � 1I (2.65)

where � D 256 and x is the normalized sample value to be compounded and is
limited to 13 magnitude bits. Its corresponding expanding function is

x D f �1.y/ D sign.y/
.1 C �/jyj � 1

�
; �1 � y � 1: (2.66)

Both functions are plotted in Fig. 2.12.
A similar companding, called A-law companding, is deployed in Europe, whose

compression function is

y D f .x/ D sign.x/

1 C ln.A/



Ajxj; 0 � jxj � 1

A
I

1 C ln.Ajxj/; 1
A

< jxj � 1I (2.67)

where A D 87:7 and the normalized sample value x is limited to 12 magnitude bits.
Its corresponding expanding function is

x D f �1.y/ D sign.y/

(
1Cln.A/

A
jyj; 0 � jyj � 1

1Cln.A/
I

ejyj.1Cln.A//�1

ACA ln.A/
; 1

1Cln.A/
< jyj � 1:

(2.68)

It is usually very difficult to implement both the logarithmic and exponential
functions used in the companding schemes above, especially on embedded micro-
processors with limited resources. Many such processors even do not have a floating
point unit. Therefore, the companding functions are usually implemented using
piece-wise linear approximation. This is adequate due to the fairly low requirement
for speech quality in telephonic systems,

2.4.2.2 Audio Coding

Companding is not as widely used in audio coding as in speech processing, partly
due to higher quality requirement and wider dynamic range which renders im-
plementation more difficult. However, MPEG 1&2 Layer III [55, 56] and MPEG
2&4 AAC [59, 60] use the following exponential compression function to quantize
MDCT coefficients:

y D f .x/ D sign.x/jxj3=4; (2.69)

which may be considered as an approximation to the logarithmic function. The
allowed compressed dynamic range is �8191 � y � 8191. The corresponding
expanding function is obviously

x D f �1.y/ D sign.y/jyj4=3: (2.70)



42 2 Scalar Quantization

The implementation cost for the above exponential function is a remarkable issue
in decoder development. Piece-wise linear approximation may lead to degradation
in audio quality, hence may be unacceptable for high fidelity application. Another
alternative is to store the exponential function as a quantization table. This amounts
to 13 � 3 D 39 KB if each of the 213 entries in the table are stored using 24 bits.

The most widely used companding in audio coding is the companding of quanti-
zation step sizes of uniform quantizers. Since quantization step sizes are needed in
the inverse quantization process in the decoder, they need to be packed into the bit
stream and transmitted to the decoder. Transmitting these step sizes with arbitrary
resolution is out of the question, so it is necessary that they be quantized.

The perceived loudness of quantization noise is usually considered as logarith-
mically proportional to the quantization noise power, or linearly proportional to
the quantization noise power in decibel. Due to (2.28), this means the perceived
loudness is linearly proportional to the quantization step size in decibel. Therefore,
almost all audio coding algorithms use logarithmic companding to quantize quanti-
zation step sizes:

ı D f .�/ D log2.�/; (2.71)

where � is the step size of a uniform quantizer. The corresponding expander is
obviously

� D f �1.ı/ D 2ı : (2.72)

Another motivation for logarithmic companding is to cope with the wide dynamic
range of audio signals, which may amount to more than 24 bits per sample.
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